AERO:Architecture for Enhanced
Reprogrammability and Operability

Contract ESTEC 15750/02/NL/LVH

s

/ gé’

Specification
(Extract of original document)

F. Deladerriere, Astrium SaS
F.Siebert, Aicas Gmbh
T.Ritzau, Link6ping Universitet

Reference: AERO/SP1
Issue: 0.3
Date: 2002-09-09

AERO

SP1: Software JVM Specification

Ref: AERO/SP1
Issue: 0.3

Date: 2002-09-09
Page: 2 of 83

Abstract:

This document is the specification of the AERO Real-time Java Virtual Machine project, output of the task 1.a.2.

This document defines functional requirements for AERO JVM, who is a Java Virtua Machine with real-time
capacities, for ERC32 processor. This document contains an overview of AERO JVM functionalities, functional

requirements, representative’'s requirements, environment requirement, operability requirements, portal

maintenance requirements.

ility and

Written by: Name

Company

Signature

Internal reference

F. Deladerriere

Astrium

AERO (Architecture for Enhanced Reprogrammability and Operability) is an ESA project (Contract
15750/02/NL/LVH) conducted by a consortium led by ASTRIUM-SAS with Aicas Gmbh and Linképing Universitet.

For more information please contact

ESTEC

$Eesa_____

IuEomEa Tel: +31 (0) 71

Frank J. de Bruin
ESTEC. Keplerlaan 1. PO Box 299
2200 AG Noordwijk ZH — The Netherlands

565 4951. Fax: +31 (0) 71 565 5420

e-mail fdebruin@estec.esa.nl

astrium

aicas

raimime

%

Frédéric Deladerriere

ASTRIUM

31, avenue des cosmonautes

F-31 402 Toulouse Cedex 4, France
Tel: +33 5 62 19 56 49. Fax: +335 62 19 78 9
e-mail: frederic.deladerriere@astrium-space.c

Fridtjof Siebert

AICAS Gmbh

Hoepfner Burg

Haid-und-Neu-StraBe 18

_}3-76131 KarlsRuhe, Germany

Tel: +49 721 663 96823 Fax: +49 721 663 96

om =~ .. ;
e-mail: siebert@aicas.com

Tobias Ritzau

Linkdping Universitet

Dep. Of Computer and Information Science
SE-58183 Link6ping, Sweden

Tel: +46 13 28 4494. Fax: +46 13 28 5899

893
e-mail: tobri@ida.liu.se

AERO/SP1 0.3 2002-09-09 Page 3 of 83

Revision History

Version Date Paragraphs modified | Comments
0.1 2002-04-15 First issue
0.2 2002-07-15 [2.2,3.1.1,3.1.2,4.2, 7.1 | PDR comments taken into account
0.3 2002-09-09 | All documents

Grammar and spelling corrections

AERO/SP1 0.3 2002-09-09 Page 4 of 83

Table of Contents

1. INTRODUCTION....cciiiiiiiietiensnetisssnnsissssssiss 6
11 SCOPE ...ttt et et sttt et s e s s heeshe e et e e e he e eR e e e R e e R e e R e SRR e SRe e eRE e ARe e Re e R e eRE £ eR e e eRe e Re e EeeaReeeenReesReenneereennean 6
111 SCOPE Of the PPOJECE ...ttt 6

1.1.2 Scope Of the DOCUMENL...................ccoeiieiiai ettt 6

12 RELATED DOCUMENTATIONtttteeuteeteseesieesseesseesseasseassesseesseessesssesssssessseesseessesnsesnsessesssesssesssesnsssnessaes 7
13 APPLICABLE DOCUMENTATION ...euutiiueesteeteeseeseessesseesseessesssessesanesseesseessesnsesnsessssssssssesssesnsesnsesnnssnessees 7
14 DEFINITION OF TERMS AND ACRONYMS.....uciiueeiteerteereasresseesseessesssesnsssessseesseessessessssssesssesssesssesnssssessnes 8
141 DefiNition Of TEIMIScc.coouiiuieiieeie ettt ettt ettt ettt et et e et e eneens 8

1.4.2 Acronyms and ADBFeVIALIONSccccocoiiiiiiiiiiet ettt 8

2. OVERVIEW 9
21 AERO-VM DEFINITION ...coitiiieerereesieesieesseesseesesssesseesseessesssesssesessaees ERREUR ! SIGNET NON DEFINI.
2.2 JAVA STANDARD PRINCIPES.....ccutittesteesteestesnresessessneesseesnesnesseessessseens ERREUR ! SIGNET NON DEFINI.
2.3 INSIDE A JAVA VIRTUAL MACHINE......coiieitieiiereneesee e ERREUR ! SIGNET NON DEFINI.
2.3.1 What is a Java Virtual Machine?...................ccccccccevvieooiiviiioiieniann, Erreur ! Signet non défini.
2.3.2 The Lifetime of a Java Virtual Machine...................ccccooevvoinoencnni.nn. Erreur ! Signet non défini.
2.3.3 The Architecture of the Java Virtual Machine.....................cc.cccceeu.... Erreur ! Signet non défini.
2.3.4 DAIA TYPES ..ottt Erreur ! Signet non défini.
2.3.5 WO A SIZE ..o Erreur ! Signet non défini.
2.3.6 The Class Loader SubSYStem.ccccccuiveiimniiaiiiaiiieie e Erreur ! Signet non défini.
236.1 Loading, Linking and INitialiSation...........cccoveereiieensecseeesee e Erreur ! Signet non défini.

2.36.2 The Bootstrap Class L oader

Erreur ! Signet non défini.

2.3.6.3 User-Defined Class LOBOENSccovieireerineese e Erreur ! Signet non défini.

2364 NAIME SPACES. ...ttt et sae e Erreur ! Signet non défini.
2.3.7 The Method AFeq.................cccccoooeiiiiiiiiiiieeeeeeee e Erreur ! Signet non défini.
2.3.8 TYPE INfOFMALION. ... Erreur ! Signet non défini.
2.3.9 The Constant POOL..................ccccccooouiiiiiiiiiiiiiiiieieee e Erreur ! Signet non défini.
2.3.10 Field INformation....................ccocuoiieiiiiiiiiiiiiieie e Erreur ! Signet non défini.
2.3.11 Method INformation....................ccoeceieieiieoiiiiieiee et Erreur ! Signet non défini.
2.3.12 Class Variables..............cccccoociovoiiiiiiiiiiiiieieee et Erreur ! Signet non défini.
2.3.13 A Reference to Class Classloader..................c..ccccooeviviivinoaneannn, Erreur ! Signet non défini.
2.3.14 A Reference to Class CLASS....cccvcuiueiieaieiieieeee e Erreur ! Signet non défini.

23141 Method TADIES. ..ot Erreur ! Signet non défini.

2.3.142 AnExample of Method AreaUSe.........cocvirirrenninnieereenese e Erreur ! Signet non défini.
2.3.15 THe HEapc.coooiiiiiiii et Erreur ! Signet non défini.
2.3.16 Garbage ColleCtioncccccovcuiciiiiiieiieiiee e Erreur ! Signet non défini.
2.3.17 Object RepreSentationccocceuceeeciaeieeiaeaieseeee e Erreur ! Signet non défini.
2.3.18 Array RepreSeRntation.ccceevueieeiiiieiiciieee e Erreur ! Signet non défini.
2.3.19 The Program COURLER.................ccccceeeeieaiaeeeie et Erreur ! Signet non défini.
2.3.20 The Java SEACK..............c.cccoooiiiiieiieiiee et Erreur ! Signet non défini.

2.320.1 The StACK FramMe.....cccceiieeieseeieirieesiee ettt Erreur ! Signet non défini.

2.3.20.2 Possible Implementations of the Java Stackccccovervreervenenecreeens Erreur ! Signet non défini.

AERO/SP1 0.3 2002-09-09 Page 5 of 83

2.3.20.3 Native Method Stacks...........ccccvcuririininiiicccceeecceas
2.3.21 Execution ENGine.............ccccoocoviviiiniiiiniiiiiiicec e
23211 ThelnStruction Set........ccccoviiiiiciciireeece e
23212 EXecution TEChNIQUES.........ccureruierierirentenerieesieie s
2.3.22 TRP@AUS ...
2.3.23 Native Method Interface.................cccooovveieioiinciiiciaiiaenn,
2.3.24 The Real Machine...................ccccoiieiiieiiaiiiiieeeeee,

.................... Erreur ! Signet non défini.

Erreur ! Signet non défini.

.................... Erreur ! Signet non défini.

................... Erreur ! Signet non défini.

Erreur ! Signet non défini.
Erreur ! Signet non défini.

Erreur ! Signet non défini.

3. FUNCTIONAL REQUIREMENTS 10
3.1 JAVA VIRTUAL MACHINEttiiiiciee e eiiee e e ettt e e eiteee e s stteeessateeesesaeeesasseeeeastaeesannseeessseeessssanssanseesesnssenaans 11

Bu Ll DESTH ettt et ettt e 11

3012 ROAIIME.......ccciiieoeee e 26

3.2 2 SRS 46
3.2.1 GeNeral FEQUITEMENLSc.cccueauieeieee ettt ettt ettt et e e et ebe et eee e neens 48

3.2.2 Standard API supported in embedded CONIEXLccocceiiiiiiiiiiiiiiiii e 50
3221 L@ 7 = T 50

3222 LANG AP .ottt b bbb bbb A b bbbt e Rt bbbt s s aetebene 56

3223 LANG/REFIECE AP ..ottt ettt sttt s s s ae s s s s s aebebens 62

3224 L0 L N OO 65

3.2.3 Specific new API in embedded CONIEXccoccuiiiiiiiiiiiiiiieei et 69
3231 JAVAX.TEAITIME AP ...ttt et e bbbt st b et s e e b e neenis 69

3.23.2 OENEIS APIS......ceoeeeeeeteeceeee ettt et ae e es st st e bbb e s s es st st e s et e s e se e s et et b et esnss s st seassns st ssetetesesnannans 70

3.2.4 API for test & debug PUFPOSEScccoociiiiiiiiieieee ettt 71
3.24.1 L@ 7 = SRR 71

3.24.2 LBNG AP bR e Rt et r e e e nr e aneenenreen 72

3.24.3 LS A ISP 72

3.3 B || RO RPSTR 75
4. ENVIRONMENT REQUIREMENTS 76
4.1 LK L0 IR TSRS 76
4.2 OPERATING SYSTEM .. uutiiiiiieeeeeiuteeeiitteeeesteeesaseesestaeesaastesesassssessesssaassesesassssesassesesasssesesassesessnsesesannes 7
S. OPERABILITY REQUIREMENTS 78
51 USER'SIMANUAL ..ttt itteeeeetteeeeeteeeestteeeesateeesasseeeaastseeeassesesasseesaastesesassseeessseessassesssassesssnsenessnsserennnsnees 78
52 L0 I 1= T S 78
53 INTERFACE STANDARDcuetiiittiteiiitteeeiitteeeeasteeesaasseessasseesaastaeesaassesesasseessatesesasssesesssssssssnsesesanssesesnnsenes 78
54 INTERFACE ERGONOMY ...utiiiiiutiieietteeeiitteeesasteeesasseeesasseesaassesesanssssssasssessassesesssssssesasssssssnsesssanssesesnnseees 78
6. DEVELOPMENT REQUIREMENTS 79
7. PORTABILITY AND MAINTAINABILITY REQUIREMENTS.....80
7.1 PORTABILITY OF DESIGN AND CODE.......uuttieiiteeeeitteeeaisteeesssseessasseessasssesesssssesssssesesssssssssnsssssssssesesssssees 80
7.2 MAINTAINABILITY REQUIREMENTS. 11uttiiiiiiiitttteeteseiiiistseetesssessstssseesssssssssssssessssisssssssessesssssssssssssesssenns 80

8. ANNEXE : HIERARCHY FOR PACKAGE JAVAX.REALTIME

ERREUR ! SIGNET NON DEFINI.

AERO/SP1 0.3 2002-09-09 Page 6 of 83

8.1 CLASSHIERARCHY eeeiiiiiiiitieiiee ettt ssbaree e e s eabara e e s e sanabaeee s ERREUR ! SIGNET NON DEFINI.
8.2 INTERFACE HIERARCHY ...oooiiiitiiiiiiee i ciiitteie e s essisbasee e s s s e sssabaneeesseesnnnes ERREUR ! SIGNET NON DEFINI.

AERO/SP1 0.3 2002-09-09 Page 6 of 83

1. Introduction

1.1 Scope

1.1.1 Scope of the Project

AERO (Architecture for Enhanced Reprogrammability and Operability) is an ESA project (contract
ESTEC 15750/02/NL/LVH). The objectives of the project are to investigate on a real-time Java
virtual machine for ERC32. Special attention is put on the garbage collection mechanism and
deterministic execution model.

The project is split in two phases. The first phase investigates existing virtual machine to choose a
potential candidate that will be customized, are then investigates the definition of requirements
concerning a real-time interpreter in on-board systems. An implementation plan is proposed for the
second phase. This second phase is dedicated to the definition of software functions of the real-time
Javavirtual machine and to their implementation and assessment through validation tests.

1.1.2 Scope of the Document
This document is an output of the task 1.a.2 “Software JVM Specification”.

This document defines functional requirements for AERO JVM, is a Java Virtual Machine with real-
time capacities, for ERC32 processor.

On board application programs shall be written in a standard language : Java, which is compiled to
give Bytecode. Then this code can be loaded in spacecraft to be executed by the virtual machine that
is a part of on board software.

This document contains :
» an overview of AERO JVM functionalities and standard JVM mechanisms
* functional requirements
* environment requirement
* operability requirements

* portability and maintenance requirements.

Important notice :

Due to complexity of JVM concept, the overview chapter introduces with precision the
mechanisms of standard JVM to provide easier requirements understanding.

AERO/SP1 0.3 2002-09-09 Page 7 of 83

1.2 Related Documentation

[RTS]] Real-Time Specification for Java (RT for Java Expert Group) final release,
December 2001.
[JSL] Java Specification Language, Bill Joy, Guy Steele, James Gosling, Gilad
Bracha, 2000 2nd Edition ISBN 0-20131-008-2
[IVMS] Java Virtual Machine Specification, Tim Lindholm & Frank Yellin
Addison- Wesley Pub Co, 1999 2nd Edition ISBN 0O-
20-143294-3
[BOOK1] Inside Java 2 Virtual Machine, B.Veners, Mac Graw Hill, 1999 2nd
Edition ISBN 0-07-135093-4
[BOOK?Z] Java Virtual Machine, Jon Meyer & Troy Downing, O'Reilly, ISBN 1-
56592-194-1

1.3 Applicable Documentation

[AERO] Architecture for Enhanced Reprogrammability and Operability, ESTEC
Contract n°15750/02/NL/LVH.

[Prop] Architecture for Enhanced Reprogrammability and Operability, Proposal
for ESA ITT AO/1-3959/01/NL/PB. Astrium EEA.PR.FD.3682269.01.

[MNM] Minutes of AERO Project Negotiation Meeting, Noordwijk, NL, January
31, 2002

[MP] Management Plan of AERO Project

AERO/SP1 0.3 2002-09-09 Page 8 of 83

1.4 Definition of Terms and Acronyms

1.4.1 Definition of Terms

None

1.4.2 Acronyms and Abbreviations

Acronyms and abbreviations used in thistext are defined as follows :

AERO Architecture for Enhanced Reprogrammability and Operability

AIE - AsynchronouslylnterruptedException

Al-method - (Asynchronously Interruptible) A method is said to be asynchronously interruptible if it
includes AIE in itsthrows clause.

ATC Asynchronous Transfer of Control

ATC-deferred section - a synchronized method, a synchronized statement, or any
method or constructor without AIE in its throws clause.

ESA European Space Agency

ESTEC European Space Technological Centre
GC Garbage Collector

ICD Interface Control Document

ICR Individual Control Register

JNI JavaNative Interface

JVM JavaVirtual Machine

OBS On Board Software

RTSJ Real-Time Specification for Java
TBC ToBeConfirmed

TBD ToBeDefined

N Technical Note

VM Virtual Machine

WP Work Package

AERO/SP1 0.3 2002-09-09 Page 9 of 83

2. Overview

CHAPTER REMOVED
FROM THE AERO PROJECT
ORIGINAL SP1 DOCUMENT

AERO/SP1 0.3 2002-09-09 Page 10 of 83

3. Functional Requirements

This chapter defines functiona requirements for general use of the AERO JVM.
The SRD requirements are introduced trough 5 column tables (to be used in tracability tool):
* thefirst column identifies the SRD requirement with following rules :

REQ/AERO. xxx (for function). xxx (for sub-function). xxxx (number)

Functions identifiers are ENV for environment, GEN for general, DES for design, RT for real-
time, TOO for tools

Sub-function identifiers are INIT for initialisation, DBG for debug, RUN for running, VER for
verification, TRA for trace, SCH for scheduling, SYN for synchroning, ASY from asynchroning,
THR for thread, MEM for memory

* the second column describes the requirement.
* thethird column isempty , link with URD is not applicable for AERO JVM

* the fourth column indicate the level of compliance of the requirement : STD (Standard Java
core), RTSJ (Real-Time Specification for Java), Aero (specific to project)

* the fifth column gives the corresponding verification method with :
T : testing,
A :analysis,
| : inspection code.

When a requirement will be suppressed identifier will not be suppressed, deleted mention will
replace description

AERO/SP1 0.3 2002-09-09 Page 11 of 134

3.1 Java Virtual Machine

3.1.1 Design

General

Design general requirement defines the base capabilities of the AERO-VM, including the compliance with the JVM core standard. One of
the most important features of Javais the ability to dynamically load code in the form of class files during execution, beit from local files or
from a remote system. Performance is another important requirement, but on board constraints involve to provide other techniques than
standard ones (like JIT technologies).

REQ/AERO.DES.GEN.0010 | The AERO JVM shall implement base mechanism as defined in [JVMS] and interface of the STD T
standard core JVM including Classloader, Garbage Collector, Memory Manager and Security
Manager.

REQ/AERO.DES.GEN.0020 | The AERO JVM shall supports dynamic class loading. STD T

Justification : Any software component can be loaded dynamicaly, alowing on-the-fly
reconfiguration, hot swapping of code, dynamic additions of new features and application
execution.

REQ/AERO.DES.GEN.0030 | Optimisations shall be developed to ensure good performance of the java code execution Aero T

Remark :verification shall be made using standard Java Benchmark tools

REQ/AERO.DES.GEN.0040 | Just-in-time compilation technologies shall not be used. Aero

Remark : theinitial delay for compilation is breaking all real-time constraint.

AERO/SP1 0.3 2002-09-09 Page 12 of 134

REQ/AERO.DES.GEN.0050 | The AERO JVM shall execute up to 64 tasks without requiring to run a new instance of the VM. Aero

REQ/AERO.DES.GEN.0060 | The Start process of an application shall be implemented as: loading application, create new Aero
instance of corresponding object, start the associated process, and run the application

AERO/SP1 0.3 2002-09-09 Page 13 of 134

Scheduling

In the AERO JVM, scheduling refers to the production of a sequence (or ordering) for the execution of a set of threads (a
schedule).

Requirements on scheduling have a direct impact on the design of the solution.

REQ/AERO.DES.SCH.0010 | Execution of machine instructions shall be predictable and in conformance with [RTS]] Aero

REQ/AERO.DES.SCH.0020 |A real-time Scheduler shall be provided instead of standard Java scheduler, expected WCET to Aero
react on an event shall be fewer than 10 milliseconds.

REQ/AERO.DES.SCH.0030 |A generic (javastandard interface) Schedulable interface will be provided RTSJ
Justification :this interface will be used to specify that an object is schedulable by the real-time
scheduler
REQ/AERO.DES.SCH.0040 | Any instance of any class implementing Schedulable shall be a schedulable object. RTSJ
REQ/AERO.DES.SCH.0050 | Schedulable objects scheduling and dispatching shall be managed by the instance of Scheduler RTSJ

REQ/AERO.DES.SCH.0060 |In conformance with RTSJ, three classes (and corresponding JVM internal execution model) RTSJ
shall be implemented in AERO JVM : RealtimeThread, NoHeapRealtimeThread and
AsyncEventHandler.

AERO/SP1 0.3 2002-09-09 Page 14 of 134

Memory

Real-time constraints introduce the concept of memory area. A memory area represents an area of memory that may be used
for the allocation of objects. Some memory areas exist outside the heap and place restrictions on what the system and garbage
collector may do with objects allocated within. Objects in some memory areas are never garbage collected; however the
garbage collector must be capable of scanning these memory areas for references any object within the heap to preserve the
integrity of the heap.

REQ/AERO.DES.MEM.0010 | To be compliant with [RTSJ] four types of memory areas shall be provided : scoped, physical,
immortal and heap

Justification :

- Scoped memory provides a mechanism for dealing with a class of objects that
have lifetime defined by syntactic scope

- Physicd memory allows java objects to be created within specific physical
memory regions that have particular important characteristics, such as memory
that has substantially faster access

- Immortal memory represents an area of memory containing objects that, once
allocated, exist until the end of the application, i.e., the objects are immortal

- Heap memory represents an area of memory that is the heap. The determinant of
lifetime of objects on the heap is unchanged (compare with standard Java
implementation), the lifetime is still determined by visihility.

RTSJ

REQ/AERO.DES.MEM.0020 | AERO-VM shall provide support for memory allocation budgets for threads using memory areas.
Maximum memory area consumption and maximum allocation rates for individual real-time
threads shall be specified by the user when the thread is created

Aero

AERO/SP1 0.3 2002-09-09 Page 15 of 134

REQ/AERO.DES.MEM.0030 | AERO-VM shall provide deterministic real-time garbage collection based on a known and Aero
proven technique.

REQ/AERO.DES.MEM.0040 | AERO-VM garbage collection shall be exact (in contrast to being conservative), i.e. al Aero
unreachabl e objects must be reclaimed.

REQ/AERO.DES.MEM.0050 | It must be possible to predict the amount of garbage collection work needed by any piece of Aero
code, i.e. it must be possible to calculate the WCET of any piece of code regardless if contains
memory management or not.

REQ/AERO.DES.MEM.0060 | Given a maximum memory usage and the amount of available memory, it must be possible to Aero
prove that the system never runs out of memory.

AERO/SP1 0.3 2002-09-09

Page 16 of 134

Thread

REQ/AERO.DES.THR.0010 | To provide robust execution model and performance, all java threads provided by the AERO-VM Aero
shall be real-time threads.

REQ/AERO.DES.THR.0020 | Threads waiting to acquire a resource shall be released in execution eligibility order based on RTSJ
their priorities.
Remark :
Calling athread with lower priority means to increase priority of this thread temporarily to not be
stopped during the call.

REQ/AERO.DES.THR.0030 | Threads waiting to enter synchronized blocks shall be granted access to the synchronized block RTSJ
in execution eigibility order

REQ/AERO.DES.THR.0040 | A blocked thread that becomes ready to run shall be given access to the processor in execution RTSJ
eligibility order

REQ/AERO.DES.THR.0050 |A thread that performs a ‘yield’ shall be given access to the processor after waiting threads pRRA&J
same execution eligibility

AERO/SP1 0.3 2002-09-09 Page 17 of 134

Asynchronous Event handling

Real-time systems typically interact closely with the real world. With respect to the execution of logic, the real world is asynchronous. We

thus felt compelled to include efficient mechanisms for programming disciplines that would accommodate this inherent asynchrony. The

real-time specification generalizes the Java language’s mechanism of asynchronous event handling. Required classes repttegent things
can happen and logic that executes when those things happen. A notable feature is that the execution of the logic isrstheduled
dispatched by an implemented scheduler.

REQ/AERO.DES.ASY.0010 |Asynchronous event facility shall be provided. In conformance with [RTSJ] two classes shahFBTéSJ T
available : AsyncEvent and AsyncEventHandler

REQ/AERO.DES.ASY.0020 |AsyncEvent object shall manage the unblocking of handlers when event is fired, and the $seRDSJ T
handlers associated with the event (cf. corresponding API)

REQ/AERO.DES.ASY.0030 |AsyncEventHandler object shall be a java runnable event handler object with parametgrfR1®J T
control execution of handler once the associated AsyncEvent is fired.

REQ/AERO.DES.ASY.0040 |When an event is fired, the handler shall be executed asynchronously, scheduled according tR TS T
associated parameters (cf. corresponding API)

REQ/AERO.DES.ASY.0050 | The system must cope well with situations where there are 100 instances of AsyncEvent Rm&J T
AsyncEventHandler. The number of fired (in process) handlers is expected to be smaller.

REQ/AERO.DES.ASY.0060 |New Timer class shall be a specialized form of an AsyncEventHandler that represents an [eRargJ T
whose occurrence is driven by time.

REQ/AERO.DES.ASY.0070 | There must be two forms of Timers to be compliant with [RTSJ]: the OneShotTimer gnd|tR&SJ T
PeriodicTime. Instance of OneShotTimer fire once, at the specified time. Periodic timersi|fire off
at the specified time, and then periodically according to a specified interval.

REQ/AERO.DES.ASY.0080 |A specific object must drive timers: Clock that represents the real-time clock. The Clogk gl&ESJ T

AERO/SP1 0.3 2002-09-09

Page 18 of 134

may be extended to represent other clocks.

REQ/AERO.DES.ASY.0090

In conformance with [RTSJ], the clock class provide the getRealtimeClock() method.

RTSI

AERO/SP1 0.3 2002-09-09 Page 19 of 134

Asynchronous Transfer of Control(ATC)

Sometimes the real world changes so drastically (and asynchronously) that the current point of logic execution should be immediately and
efficiently transferred to another location. A mechanism which extends Java’'s exception handling shall be include to iabdonapiol
programmatically change the locus of control of another Java thread. It is important to note that in the RTSJ this asymahsteroas
control is restricted to logic specifically written with the assumption that its locus of control may asynchronously change.

REQ/AERO.DES.ASY.0100 |A mechanism shall be providing through which an ATC can be explicitly triggered in a|targeTSJ T
thread. This triggering may be direct (from a source thread) or indirect (through an asynchrgnous
event handler)

REQ/AERO.DES.ASY.0110 |A thread shall explicitly indicate its susceptibility to ATC. RTSJ T

Remark: Since legacy code or library methods might have been written assuming no ATC|, by
default ATC should be turned off (more precisely, it should be deferred as long as contfol|is in
such code).

REQ/AERO.DES.ASY.0120 |Even if a thread allows ATC, some code sections shall be executed to completion and thug RTGSJ T
is deferred in such sections.

Justification: The ATC-deferred sections are synchronized methods and statements.

REQ/AERO.DES.ASY.0130 |Code that responds to an ATC shall not return to the point in the thread where the ATTC|\RasSJ T
triggered; that is, an ATC is an unconditional transfer of control. Presumptive semantics, which
returns control from the handler to the point of interruption, are not needed since they can be
achieved through other mechanisms (in particular, an AsyncEventHandler).

REQ/AERO.DES.ASY.0140 |It must be possible to trigger an ATC based on any asynchronous event including an |exteRiesJ T
happening or an explicit event firing from another thread. In particular, it must be possiblg to
base an ATC on a timer going off.

AERO/SP1 0.3 2002-09-09

Page 20 of 134

REQ/AERO.DES.ASY.0150 | Through ATC it shall be possible to abort a thread but in another manner that does not carry the RTSJ
dangers of the Thread class’s stop() and destroy() methods.

REQ/AERO.DES.ASY.0160 |If ATC is modeled by exception handling, there shall be some way to ensure thai RMSJ
asynchronous exception is only caught by the intended handler and not, for example, by an all-
purpose handler that happens to be on the propagation path

REQ/AERO.DES.ASY.0170 | Nested ATCs must work in conformance with RSTJ. RTSJ T
Remarks :

For example, consider two nested ATC-based timers and assume that the outer timer |has a
shorter timeout than the nested, inner timer. If the outer timer times out while control ig in| the
nested code of the inner timer, then the nested code must be aborted (as soon as it is putside an
ATCdeferred section), and control must then transfer to the appropriate catch clause for the|outer
timer. An implementation that either handles the outer timeout in the nested code, or that waits
for the longer (nested) timer, is incorrect.
REQ/AERO.DES.ASY.0190 | ATC must be implemented without inducing an overhead for programs that do not use it RTSJ
REQ/AERO.DES.ASY.0200 |If code with a timeout completes before the timeout's deadline, the timeout shall| BISJ T

automatically stopped and corresponding resources returned to the system

AERO/SP1 0.3 2002-09-09 Page 21 of 134

Asynchronous Thread Termination

Again, due to the sometimes drastic and asynchronous changes in the real-world, application logic may need to arrange for a red-time Java
thread to expeditiously and safely transfer its control to its outermost scope and thus end in a normal manner. Note that unlike the
traditional, unsafe, and deprecated Java mechanism for stopping threads, as defined in [RTSJ] mechanism for asynchronous event handling
and transfer of control is safe.

Earlier versions of the Java language supplied mechanisms for achieving these effects: in particular the methods stop() and destroy() in class
Thread. However, since stop() could leave shared abjects in an inconsistent state, stop() has been deprecated. A goa was to meet the
requirements of asynchronous thread termination without introducing the dangers of the stop() or destroy() methods.

The [RTSJ] accommodates safe asynchronous thread termination through a combination of the asynchronous event handling and the asynchronous
transfer of control mechanisms. If the significantly long or blocking methods of a thread are made interruptible the corresponding algorithm can
consist of a number of asynchronous event handlers that are bound to external events.

REQ/AERO.DES.ASY.0210 | When an asynchronous event occurs the handlers shall invoke interrupt() on appropriate threads. RTSI| T

REQ/AERO.DES.ASY.0220 | Threads that are terminated will then clean up by having al of the interruptible methods transfer RTSI| T
control to appropriate catch clauses as control enters those methods (either by invocation or by
the return bytecode). This continues until the run() method of the thread returns.

Remark :This idiom provides a quick (if coded to be so) but orderly clean up and termination of
the thread.

REQ/AERO.DES.ASY.0230 | The system shall comprise 10 asynchronous event handlers as appropriate. This number could be Aero T
change at AERO-VM generation.

AERO/SP1 0.3 2002-09-09 Page 22 of 134

Exceptions & Errors

Real-time problematic require to introduce several new exceptions, and some new treatment of exceptions surrounding asynchronous
transfer of control and memory allocators.

REQ/AERO.DES.EXE.0010 |In conformance with RTSJ, new exceptions compare with standard Java and associated RTSI| T
mechanisms shall be implanted:

- AsynchronouslyInterruptedException: Generated when a thread is asynchronously
interrupted.

- DuplicateFilterException: PhysicalMemoryManager can only accomodate one filter
object for each type of memory. It throws this exception if an attempt is made to register
more than one filter for atype of memory.

- InaccessibleAreaException: Thrown when an attempt is made to execute or alo- cate
from an allocation context that is not accessible on the scope stack of the current thread.

- MiITViolationException: Thrown by the fire() method of an instance of AsyncEvent
when the bound instance of AsyncEventHandler with a Release Parameter type of
SporadicParameters has mitViolationExcept behavior and the minimum interarrival time
gets violated.

- MemoryScopeException: Thrown by the wait-free queue implementation when an object
is passed that is not compatible with both ends of the queue.

- MemoryTypeConflictException: Thrown when the PhysicaMemoryManager is given
conflicting specification for memory. The conflict can be between two types in an array
of memory type specifiers, or when the specified base address does not fall in the
requested memory type.

- OffsetOutOfBoundsException: Generated by the physica memory classes when the
given offset is out of bounds.

- SizeOutOfBoundsException: Generated by the physical memory classes when the given
sizeisout of bounds.

AERO/SP1 0.3 2002-09-09

Page 23 of 134

REQ/AERO.DES.EXE.0020 | New runtime exceptions and associated mechanisms shall be implanted : RTSJ
- UnsupportedPhysicalMemoryException: Generated by the physical memory classes
when the requested physical memory is unsupported.
- MemoryInUseException: Thrown when an attempt is made to allocate a range of
physical or virtual memory that is already in use.
- ScopedCycleException: Thrown when a user tries to enter a ScopedMemory that is
already accessible (ScopedMemory is present on stack) or when a user tries to create
ScopedMemory cycle spanning threads (tries to make cycle in the VM ScopedMemory
tree structure).
- UnknownHappeningException: Thrown when bindTo() is caled with an illega
happening.
REQ/AERO.DES.EXE.0030 | New error and associated mechanisms shall be implanted : RTSJ

- ResourceLimitError: Thrown if an attempt is made to exceed a system resource limit,
such as the maximum number of locks.

AERO/SP1 0.3 2002-09-09

Page 24 of 134

JVM conformance table

Function Standard JVM core | Required in | Remarks
AERO-VM
General
Dynamic class loading Yes Yes
Garbage collector Yes Yes Specific GC for real-time
Memory manager Yes Yes
Security manager Yes Yes
Just-in-Time compiler No No
Single VM No Yes Use asingle instance to run any java applications
Scheduling
Predictable execution No Yes
Real-time schedul er No Yes
Schedulable interface Yes Yes
Specific thread No Yes RealtimeThread, NoHeapRealtimeThread
Asynchronous handler No Yes
Memory
Memory types No Yes
Memory alocation for thread | No Yes
Real-time GC No Yes

AERO/SP1 0.3 2002-09-09

Page 25 of 134

Function Standard JVM core | AERO-VM Remarks
Thread
Classical thread Yes Yes Classical thread as assimilated to rea-time one in AERO-VM
Real-time thread No Yes
Asynchronous
Asynchronous event class No Yes
Asynchronous handler No Yes
Timer Yes Yes Standard Timer classis not areal-time implementation
PeriodicTimer No Yes
ATC No Yes
Asynchronous thread term. Partialy Yes Standard thread termination is not deterministic
Exception & Errors
Standard mechanism Yes Yes
Standard class Yes Yes
Asynchronous exceptions No Yes
Asynchronous error No Yes

AERO/SP1 0.3 2002-09-09 Page 26 of 134

3.1.2 Real-time

Init

This specification accommodates the variation in underlying system variation in a number of ways. One of the most important
is the concept of optionally required classes e.g., the POSIX signal handler class. This class provides a commonality that can
be relied upon by program logic that intends to execute on implementations that themselves execute on POSIX compliant
systems. The RealtimeSystem class functions in similar capacity to javalang.System. Similarly, the RealtimeSecurity class
functions similarly to java.lang.SecurityManager.

REQ/AERO.RT.INL.0010 The POSIX signal handler class shall be available (AERO JVM executes on an underlying platform Aero
that provides a subset of signals named with the POSIX names).
REQ/AERO.RT.INL0020 The RealtimeSecurity classisrequired as defined in [RTS]] RTSJ

AERO/SP1 0.3 2002-09-09

Page 27 of 134

Thread

The Java platform’s priority-preemptive dispatching model is very similar to the dispatching model found in the majority of

commercial real-time operating systems. However, the dispatching semantics were purposefully relaxed in order to allow
execution on a wide variety of operating systems. Thus, it is appropriate to specify RealtimeParameters and Memory
Parameters provided to the RealtimeThread constructor allow for number of common real-time thread types, including
periodic threads. The NoHeapRealtimeThread class is provided in order to allow time-critical threads to execute in preference
to the garbage collector. The memory access and assignment semantics of the NoHeapRealtimeThread are designed to

guarantee that the execution of such threads does not lead to an inconsistent heap state.

REQ/AERO.RT.THR.0010

Specific classes shall be provided to allow creation of threads that have more precise sg
semantics than java.lang.thread

he

HRIFS]

REQ/AERO.RT.THR.0020

This classes shall allow the use of areas of memory other than the heap for the allog
objects. They must allow the definition of methods for handling asynchronously interrupt
provide the scheduling semantics for handling asynchronous events.

ati
ed

oRTHJ
and

REQ/AERO.RT.THR.0030

The default scheduling policy shall manage the execution of instances of Object that im
the interface Schedulable.

=2
)

nteRhsJ

REQ/AERO.RT.THR.0040

Any scheduling policy presents in an implementation shall be available to instances of
which implement the interface Schedulable

ob

jERTES]

REQ/AERO.RT.THR.0050

The function of allocating objects in memory areas defined by instances of ScopedMemg
subclasses shall be available only to logic within instances of RealtimeT,
NoHeapRealtimeThread, AsyncEventHandler and BoundAsyncEventHandler.

hre

PRITSJ
ad,

REQ/AERO.RT.THR.0060

The invocation of methods that throw AsynchronouslylnterruptedException shall have
only when the invocation occurs in the context of instances of RealtimeT
NoHeapRealtimeThread, AsyncEventHandler and BoundAsyncEventHandler.

ef
hre

fECT S
ad,

AERO/SP1 0.3 2002-09-09

Page 28 of 134

Remark:

Chosen AERO-VM implementation is fully compliant of RTSJ requirement.

REQ/AERO.RT.THR.0070

In the specific case in which an instance of NoHeapRealtimeThread and instance of either
RealtimeThread or Thread synchronize on the same object an exception to the immediately
previous statement applies. This exception has the effect of causing an instance of
NoHeapRealtimeThread to wait for the garbage collector; exception is transferred to the
immediate previous bytecode instruction, that produce a bytecode exception.

RTSJ

REQ/AERO.RT.THR.0080

If GC implementation is made at thread level, ReatimeThread class instance shall have an
execution €ligibility lower than garbage collector.

Remark . GC implementation may be not at thread level

RTSJ

REQ/AERO.RT.THR.0090

Changing values in SchedulingParameters, ProcessingParameters, ReleaseParameters,
ProcessingGroupParameters, or use of Thread.setPriority() must not affect the correctness of any
implemented priority inversion avoidance algorithm.

RTSJ

REQ/AERO.RT.THR.0100

Instances of objects which implement the interface Schedulable shall inherit the scope stack of
the thread invoking the constructor.

Justification : 1f the thread invoking the constructor does not have a scope stack then the scope
stack of the new object will have one entry which will be the current allocation of context of the
thread invoking the constructor (RTJS requirement).

RTSJ

REQ/AERO.RT.THR.0110

Instances of objects which implement the interface Schedulable shall have an initial entry in their
scope stack. This entry will be either: the memory area given as a parameter to the constructor,
or, if no memory areais given, the allocation context of the thread invoking the constructor.

RTSJ

REQ/AERO.RT.THR.0120

The default parameter values for an object implementing the interface Schedulable must be the
parameter values of the thread invoking the constructor.

RTSJ

AERO/SP1 0.3 2002-09-09 Page 29 of 134

Justification : 1f the thread invoking the constructor does not have parameter values then the
default values are those values associated with the instance if Scheduler which will manage the
object.

REQ/AERO.RT.THR.0130 |Instance of objects implementing the interface Schedulable shall be placed in memory RTSJ

represented by instances of ImmortalMemory, HeapMemory, LTPhysicalMemory,
V TPhysicalMemory, or Immortal PhysicalMemory.

AERO/SP1 0.3 2002-09-09 Page 30 of 134

Scheduling

As specified the required semantics and requirements of this section establish a scheduling policy that is very similar to the scheduling
policies found on the vast majority of rea-time operating systems and kernels in commercial use today. The specification accommodates
existing practice, which is a stated goal of the effort.

The semantics of the classes, constructors, methods, and fields within alow for the natural extension of the scheduling policy by
implementations that provide different scheduler objects. Some research shows that, given a set of reasonable common assumptions, 32
unique priority levels are a reasonable choice for close-to-optimal scheduling efficiency when using the rate-monotonic priority assignment
algorithm (256 priority levels better provide better efficiency). [RTSJ] requires at least 28 unique priority levels as a compromise noting
that implementations of this specification will exist on systems with logic executing outside of the Java Virtual Machine and may need
priorities above, below, or both for system activities.

REQ/AERO.RT.SCH.0010 |The base scheduler shall support at least 28 unique values in the priorityLevel field of an RTSI| T
instance of PriorityParameters (RTJS minimum compliance requirement)

Justification : current onboard interpreter use 3 priorities

REQ/AERO.RT.SCH.0020 |Higher values in the priorityLevel field of an instance of PriorityParameters must have a higher RTSI| T
execution digibility

REQ/AERO.RT.SCH.0030 |In unigue means that if two schedul able objects have different valuesin the priorityLevel field in RTSI| T
their respective instance of PriorityParameters, the schedulable object with the higher value shall
always execute in preference to the schedul able object with the lower value when both are ready
to execute.

REQ/AERO.RT.SCH.0040 | Native priorities which are lower than the 28 required rea-time priorities shall be available. RTSI| T
These are to be used for regular Java threads (ie instance of threads which are not instances of
RealtimeThread, NoHeapRealtimeThread or AsyncEventHandler classes or subclasses). The ten
traditional Java thread priorities shall have an arbitrary mapping into the native priorities. These
ten traditiona Java thread priorities and the required minimum 28 unique real-time thread

AERO/SP1 0.3 2002-09-09

Page 31 of 134

priorities shall be from the same space. Assignment of any of this (minimum) 38 priorities to
real-time threads or traditional Java threads is “legal”. It is the responsibility of applicatiof
to make rational priority assignments (RTJS requirement).

0 d

gic

REQ/AERO.RT.SCH.0050

The dispatching mechanism must allow the pre-emption of the execution of schedulable
at a point not governed by the pre-empted object.

ol

| BTS

REQ/AERO.RT.SCH.0060

For schedulable objects managed by the base scheduler no part of the system shall ¢
execution eligibility for any reason other than implementation of a priority inversion algo
This does not preclude additional schedulers from changing the execution eligibi
schedulable objects.

hal
rith
lity

ndeThé
m.
of

REQ/AERO.RT.SCH.0070

All instances of RelativeTime used in instances of ProcessingParameters, Scheduling Pararn

and ReleaseParameters shall be measured from the time at which the associated thred
such thread) is started.

\d

nKRes)
or first

REQ/AERO.RT.SCH.0080

PriorityScheduler.getNormPriority() shall be set to ((Priority- Scheduler.getMaxPriori
PriorityScheduler.getMinPriority())/3) + PriorityScheduler.getMinPriority().

Fy(

RTSJ

REQ/AERO.RT.SCH.0090

If instances of RealtimeThread or NoHeapRealtimeThread are constructed without a refg
a SchedulingParameters object a SchedulingParameters object must be created and as
values of the current thread. This does not imply that other schedulers should follow tk
Other schedulers are free to define the default scheduling parameters in the absence ¢
Scheduling-Parameters object.

ref
sig
s

1dRTBJ
ned the
rule.

| given

REQ/AERO.RT.SCH.0100

Feasibility algorithm is not required, the function shall return success whenever the fe
algorithm is executed

Justification : the [RTSJ] does not require any particular feasibility algorithm be implemer

ASi

ted

the Scheduler object.

Diltgro

1in

AERO/SP1 0.3 2002-09-09

Page 32 of 134

REQ/AERO.RT.SCH.0110

For instances of AsyncEventHandler with a release parameters object of type Sporadic
Parameters implementations are required to maintain a list of times at which instances of
AsyncEvent occurred. The ith time may be removed from the queue after the ith execution of the
handleAsyncEvent method.

RTSJ

REQ/AERO.RT.SCH.0120

If the instance of AsyncEvent has more than one instance of AsyncEvent-Handler with release
parameters objects of type SporadicParameters attached and the execution of AsyncEvent.fire()
introduces the requirement to throw at least one type of exception, then al instance of
AsyncEventHandler not affected by the exception shall be handled normally.

RTSJ

REQ/AERO.RT.SCH.0130

If the instance of AsyncEvent has more than one instance of AsyncEvent-Handler with release
parameters objects of type SporadicParameters attached and the execution of AsyncEvent.fire()
introduces the simultaneous requirement to throw more than one type of exception or error then
MITViolation-Exception must have precedence over ResourcelimitExceeded.

RTSJ

REQ/AERO.RT.SCH.0140

Thefollowing hold for the PriorityScheduler:
1. A blocked thread that becomes ready to run is added to the tail of any runnable queue
for that priority.

2. For athread whose effective priority is changed as aresult of explicitly setting
priorityLevel thisthread or another thread is added to the tail of the runnable queue for
the new priorityLevel.

3. A thread that performs a yield() goes to the tail of the runnable queue for its
priorityLevel.

RTSJ

AERO/SP1 0.3 2002-09-09 Page 33 of 134

Memory

Languages that employ automatic reclamation of blocks of memory allocated in what is traditionally called the heap by program logic also
typically use an algorithm called a garbage collector. Garbage collection algorithms and implementations vary in the amount of non-
determinacy they add to the execution of program logic. To date, experts believes that no garbage collector algorithm or implementation is
known that allows preemption at points that |eave the inter-object pointersin the heap in a consistent state and are sufficiently close in time
to minimize the overhead added to MEMORY AREA task switch latencies to a sufficiently small enough value which could be considered
appropriate for al real-time systems.

Thus, this specification provides the above-described areas of memory to allow program logic to allocate objectsin a Java-like style, ignore
the reclamation of those objects, and not incur the latency of the implemented garbage collection algorithm.

The Single Parent Rule

Every push of a scoped memory type on a scope stack requires reference to the single parent rule, which requires that every scoped memory
area have no more than one parent.

The parent of a scoped memory areais (for a stack that grows up):
« If the memory area is not currently on any scope stack, it has no parent
« If the memory area is the outermost (lowest) scoped memory area on any scope stack, its papeitdsdiaé scope.
« For all other scoped memory areas, the parent is the first scoped memory are below it on the scope stack.

Except for theprimordial scope, which represents both heap and immortal memory, only scoped memory areas are visible to the single
parent rule. The operational effect of the single parent rule is that once a scoped memory area is assigned a parer aboecof th
operations can change the parent and thus an ordering imposed by the first assignments of parents of a series of nestiewd Scapsb

is the only nesting order allowed until control leaves the scopes; then a new nesting order is possible. Thus a threwftatrtgstia

scope can only do so by entering in the established nesting order.

AERO/SP1 0.3 2002-09-09

Page 34 of 134

REQ/AERO.RT.MEM.0010 | Some MemoryArea classes are required to have linear (in object size) allocation time. RTSJ [
Justification : The linear time attribute requires that, ignoring performance variations due to
hardware caches or similar optimizations and execution of any static initialises, the execution
time of new must be bounded by a polynomial, f(n), where n is the size of the object and for all
n>0, f(n) <= Cn for constant C.

REQ/AERO.RT.MEM.0020 |The structure of enclosing scopes is accessible through a set of methods on RealtimeThread. RTSJ
These methods allow the outer scopes to be accessed like an array.
Remark : The algorithms for maintaining the scope structure are given in “Maintaining the [Scppe
Stack.” Of the RTSJ
Justification :A memory scope is represented by an instance of the ScopedMemory class.|When a
new scope is entered, by calling the enter() method of the instance or by starting an instance of
RealtimeThread or NoHeapRealtimeThread whose constructors were given a reference [to an
instance of ScopedMemory, all subsequent uses of the new keyword within the program|logic of
the scope will allocate the memory from the memory represented by that instance of
ScopedMemory. When the scope is exited by returning from the enter() method of the instance of
Scoped-Memory, all subsequent uses of the new operation will allocate the memory from the
area of memory associated with the enclosing scope.

REQ/AERO.RT.MEM.0030 |The parent of a scoped memory area must be the memory area in which the object repregeRiiigyj
the scoped memory area is allocated.

REQ/AERO.RT.MEM.0040 | Thesingle parent rule requires that a scope memory area must have exactly zero or one parept. RTS]

REQ/AERO.RT.MEM.0050 |Memory scopes that are made current by entering them or passing them as the initial | merRargJ T
area for a new thread must satisfy thele parent rule.

REQ/AERO.RT.MEM.0060 |Each instance of the class ScopedMemory or its subclasses must maintain a reference coUuRIT 93

AERO/SP1 0.3 2002-09-09 Page 35 of 134

the number of threadsin which it is being used.

Remark : When the reference count for an instance of the class ScopedMemory is decremented
from one to zero, all objects within that area are considered unreachable and are candidates for
reclamation. The finalizers for each object in the memory associated with an instance of
ScopedMemory are executed to completion before any statement in any thread attempts to access
the memory area again.

REQ/AERO.RT.MEM.0070 |Objects created in any immortal memory area shall live for the duration of the application. Their RTSJ
finalizers are only run when the application is terminated.

REQ/AERO.RT.MEM.0080 | The addresses of objects in any MemoryArea that is associated with a NoHeap- RealtimeThread RTSJ
must remain fixed while they are alive.

REQ/AERO.RT.MEM.0090 | Each instance of the virtual machine must have exactly one instance of the class RTSJ
ImmortalMemory
REQ/AERO.RT.MEM.0100 |Each instance of the virtual machine must have exactly one instance of the class HeapMemory. RTSJ

REQ/AERO.RT.MEM.0110 |Each instance of the virtual machine shall behave as if there is an area of memory into which all RTSJ
Class objects ae placed and which is unexceptionaly referenceable by
NoHeapRealtimeThreads.

AERO/SP1 0.3 2002-09-09 Page 36 of 134

REQ/AERO.RT.MEM.0120 | Strict assignment rules placed on assignments to or from memory areas must prevent the creation RTSJ

of dangling pointers, and thus maintain the pointer safety of Java. The restrictions are listed in
the following table:

Reference to Heap | Ref. To Immortal | Ref. To Scoped
Heap Yes Yes No
Immortal Yes Yes No
Scoped Yes Yes Yesif same,outer, shared scope
Local Variable | Yes Yes Yesif same,outer, shared scope
REQ/AERO.RT.MEM.0130 |Animplementation must ensure that the above checks are performed on every assignment RTSJ

statement before the statement is executed. (Thisincludes the possibility of static analysis of the
application logic).

AERO/SP1 0.3 2002-09-09 Page 37 of 134

Synchronization

Java monitors, and especially the synchronized keyword, provide a very elegant means for mutual exclusion synchronization.
Thus, rather than invent a new real-time synchronization mechanism, this specification strengthens the semantics of Java
synchronization to allow its use in real-time systems. In particular, this specification mandates priority inversion control.
Priority inheritance and priority ceiling emulation are both popular priority inversion control mechanisms; however, priority
inheritance is more widely implemented in real-time operating systems and so is the default mechanism in this specification.

By design the only mechanism required by [RTSJ] which can enforce mutual exclusion in the traditional senseis the keyword
synchronized. Noting that this specification allows the use of synchronized by both instances of javalang.Thread,
RealtimeThread, and NoHeapRealtimeThread and that such flexibility precludes the correct implementation of any known
priority inversion algorithm when locked objects are accessed by instances of javalang.Thread and NoHeapRealtimeThread,
it is incumbent on the specification to provide alternate means for protected, concurrent data access by both types of threads
(protected means access to data without the possibility of corruption). The three wait-free queue classes provide such access.

REQ/AERO.RT.SYN.0010 | Threads waiting to enter synchronized blocks must be priority queue ordered. If threads with the RTSJ
same priority are possible under the active scheduling policy such threads shall be queued in
FIFO order.
REQ/AERO.RT.SYN.0020 |Any conforming implementation must provide an implementation of the synchronized primitive RTSJ
with default behavior that ensures that there is no unbounded priority inversion. Furthermore,
this must apply to codeif it isrun within the implementation as well as to real-time threads.
REQ/AERO.RT.SYN.0030 | The Priority Inheritance monitor control policy must be implemented. RTSJ

AERO/SP1 0.3 2002-09-09 Page 38 of 134

Time

Time is the essence of real-time systems, and a method of expressing absolute time with sub-millisecond precision is an
absolute minimum requirement. Expressing time in terms of milliseconds has precedent and allows the implementation to
provide time-based services, such as timers, using whatever precision it is capable of while the application requirements are
expressed to an arbitrary level of precision.

The expression of millisecond constituents is consistent with other Java interfaces. The expression of relative times allows for
time-based metaphors such as deadline-based periodic scheduling where the cost of the task is expressed as a relative time and
deadlines are usually represented as times rel ative to the beginning of the period.

REQ/AERO.RT.GEN.0010 |All time objects must maintain microsecond precision and report their values in terms of Aero
millisecond and microsecond constituents.

REQ/AERO.RT.GEN.0020 |Time objects must be constructed from other time objects, or from millisecond/microseconds Aero
values.

REQ/AERO.RT.GEN.0030 | Time objects must provide simple addition and subtraction operations, both for the entire object RTSJ
and for constituent parts.

REQ/AERO.RT.GEN.0040 |Time objects must implement the Comparable interface if it is available. The compareTo() RTSJ
method must be implemented even if the interface is not available.

REQ/AERO.RT.GEN.0050 |Any method of constructor that accepts a Rationa Time of (x,y) must guarantee that its activity RTSJ
occurs exactly x times in every y milliseconds even if the intervals between occurrences of the
activity have to be adjusted dlightly.

Remark : the RTSJ does not impose any required distribution on the lengths of the intervals but
strongly suggests that implementations attempt to make them of approximately equal lengths.

AERO/SP1 0.3 2002-09-09 Page 39 of 134

Timer

The importance of the use of one-shot timers for timeout behavior and the vagaries in the execution of code prior to enabling
the timer for short timeouts dictate that the triggering of the timer should be guaranteed. The problem is exacerbated for
periodic timers where the importance of the periodic triggering outweighs the precision of the start time.

In such cases, it is aso convenient to allow, for example, arelative time of zero to be used as the start time for relative timers.
In many situations, it is important that a periodic task be represented as a frequency and that the period remain synchronized.
In these cases, a relatively simple correction can be enforced by the implementation at the expense of some additional
overhead for the timer.

REQ/AERO.RT.GEN.0060 | The Clock class shall be capable of reporting the achievable resolution of timers based on that RTSJ
clock.

REQ/AERO.RT.GEN.0070 | The OneShotTimer class shall ensure that a one-shot timer is triggered exactly once, regardless RTSJ
of whether or not the timer is enabled after expiration of the indicated time.

REQ/AERO.RT.GEN.0080 |The PeriodicTimer class shal alow the period of the timer to be expressed in terms of a RTSJ
RelativeTime or a Rational Time. In the latter case, the implementation shall provide a best effort
to perform any correction necessary to maintain the frequency at which the event occurs.

REQ/AERO.RT.GEN.0090 |If a periodic timer is enabled after expiration of the start time, the first event shall occur RTSJ
immediately and thus mark the start of the first period.

AERO/SP1 0.3 2002-09-09 Page 40 of 134

Asynchrony

The design of the asynchronous event handling was intended to provide the necessary functionality while allowing efficient
implementations and catering to a variety of real-time applications. In particular, in some real-time systems there may be a
large number of potential events and event handlers (numbering in the thousands or perhaps even the tens of thousands),
although at any given time only a small number will be used. Thus it would not be appropriate to dedicate a thread to each
event handler. The [RTSJ] addresses this issue by alowing the programmer to specify an event handler either as not bound to
a specific thread (the class AsyncEventHandler) or alternatively as bound to athread (BoundAsyncEventHandler).

Events are dataless; the fire method does not pass any data to the handler. This was intentional in the interest of simplicity and
efficiency. An application that needs to associate data with an AsyncEvent can do so explicitly by setting up a buffer; it will
then need to deal with buffer overflow issues as required by the application. The ability for one thread to trigger an ATC
(Asynchronous Transfer of Control) in another thread is necessary in many kinds of real-time applications but must be
designed carefully in order to minimize the risks of problems such as data structure corruption and deadlock. There is,
invariably, a tension between the desire to cause an ATC to be immediate, and the desire to ensure that certain sections of
code are executed to completion. One basic solution was to allow ATC in amethod only if the method explicitly permits this.
The default of no ATC is reasonable, since legacy code might be written expecting no ATC, and asynchronously aborting the
execution of such a method could lead to unpredictable results. Since the natural way to model ATC is with an exception
(AsynchronouslylnterruptedException, or AIE), the way that a method indicates its susceptibility to ATC is by including AIE
on its throws clause. Causing this exception to be thrown in a thread t as an effect of calling t.interrupt() was a natural
extension of the semantics of interrupt as currently defined by java.lang. Thread.

One ATC-deferred section is synchronized code. This is a context that needs to be executed completely in order to ensure a

program operates correctly. If synchronized code were aborted, a shared object could be left in an inconsistent state.
Constructors and finally clauses are subject to interruption. If a constructor is aborted, an object might be only partialy

initialized. If afinaly clause is aborted, needed cleanup code might not be performed. It is the programmer’s responsibility to
ensure that executing these constructs does not induce unwanted ATC latency. Note that by making synchronized code ATC-
deferred, this specification avoids the problems that caused Thread.stop() to be deprecated and that have made the use of
Thread.destroy() prone to deadlock. A potential problem with using the exception mechanism to model ATC is that a method
with a “catch-all” handler (for example a catch clause identifying Exception or even Throwable as the exception class) can
inadvertently intercept an exception intended for a caller. This problem is avoided by having special semantics for catching an
instance of AIE. Even though a catch clause may catch an AIE, the exception will be propagated unless the handler invokes
the happened method from AIE. Thus, if a thread is asynchronously interrupted while in a try block that has a handler such as

AERO/SP1 0.3 2002-09-09 Page 41 of 134

catch (Throwable €){ return; } then the AIE instance will still be propagated to the caller. This specification does not provide
a special mechanism for terminating a thread; ATC can be used to achieve this effect. This means that, by default, a thread
cannot be terminated; it needs to invoke methods that have AIE in their throws clauses. Allowing termination as the default
would have been questionable, bringing the same insecurities that are found in Thread.stop() and Thread.destroy().

The following terms and abbreviations will be used:

ATC - Asynchronous Transfer of Control

AIE - Asynchronously Interrupted Exception (a subclass of java.lang.InterruptedException).

Al-method - (Asynchronously Interruptible) A method is said to be asynchronously interruptibleif it includes AIE in its throws clause.
ATC-deferred section - a synchronized method, a synchronized statement, or any method or constructor without AIE in its
throws clause.

REQ/AERO.RT.ASY.0010 | The JavaReal Time approach to ATC shall be designed to be based on exceptions and it shall be RTSJ
an extension of the current Java language rules for java.lang.Thread.interrupt().

REQ/AERO.RT.ASY.0020 |When an instance of AsyncEvent occurs (by either program logic or a happening), all run() RTSJ
methods of instances of the AsyncEventHandler class that have been added to the instance of
AsyncEvent by the execution of addHandler() must be scheduled for execution. This action may
or may not be idempotent.

REQ/AERO.RT.ASY.0030 | Every occurrence of an event shall increment a counter in each associated handler. RTSJ

REQ/AERO.RT.ASY.0040 |Handlersshall elect to execute logic for each occurrence of the event or not. RTSJ

REQ/AERO.RT.ASY.0050 |Instances of AsyncEvent and AsyncEventHandler must be created and used by any program RTSJ
logic.

REQ/AERO.RT.ASY.0060 | More than oneinstance of AsyncEventHandler must be added to an instance of AsyncEvent. RTSJ

REQ/AERO.RT.ASY.0070 | Aninstance of AsyncEventHandler must be added to more than one instance of AsyncEvent. RTSJ

REQ/AERO.RT.ASY.0080 |Instances of the class AsynchronouslylnterruptedException shall be generated by execution of RTSJ
program logic and by internal virtual machine mechanisms that are asynchronous to the

AERO/SP1 0.3 2002-09-09

Page 42 of 134

execution of program logic which is the target of the exception.

REQ/AERO.RT.ASY.0090

Program logic that exists in methods that throw Asynchronouslylnterrupted-Exception must be
subject to receiving an instance of Asynchronouslylnterrupted-Exception at any time during
execution except as provided below.

RTSJ

REQ/AERO.RT.ASY.0100

The [RTSJ] specifically requires that blocking methods in javaiio.* must be prevented from
blocking indefinitely when invoked from a method with AIE in its throws clause.

Justification : The implementation, when either AIE.fire() or Realtime-Thread.interrupt() shall
be called when control isin ajava.io.* method invoked from an interruptible method, may either
unblock the blocked call, raise an IOException on behalf of the call, or allow the call to complete
normally if the implementation determines that the call would eventually unblock.

RTSJ

REQ/AERO.RT.ASY.0110

Program logic executing within a synchronized block within a method with
AsynchronouslylnterruptedException in its throws clause must not be subject to receiving an
instance of AIE.

Justification : The interrupted state of the execution context is set to pending and the program
logic will receive the instance when control passes out of the synchronized block if other
semanticsin thislist so indicate.

RTSJ

REQ/AERO.RT.ASY.0120

Constructors must be allowed to include AsynchronouslylnterruptedException in their throws
clause and will thus be interruptible.

RTSJ

REQ/AERO.RT.ASY.0130

A thread that is subject to asynchronous interruption (in a method that throws AIE, but not in a
synchronized block) must respond to that exception within a bounded number of bytecodes. This
worst-case response interval (in bytecode instructions) must be documented.

RTSJ

AERO/SP1 0.3 2002-09-09

Page 43 of 134

REQ/AERO.RT.ASY.0140

ATC must work as follows, if t is an instance of RealtimeThread or NoHeapRealtimeThread and
t.interrupt() or AlE.fire() is executed by any thread in the system then:

1. If control isin an ATC-deferred section, then the AIE is put into a pending state.

2. If control is not in an ATC-deferred section, then control is transferred to the nearest
dynamically-enclosing catch clause of atry statement that handles this AIE and which is
in an ATC-deferred section. See section 11.3 of The Java Language Specification second
edition for an explanation of the terms, dynamically enclosingand handles. The RTSJ
uses those definitions unaltered.

3. If control isin either wait(), sleep(), or join(), the thread is awakened and the fired AIE
(which is a subclass of InterruptedException) is thrown. Then ATC follows option 1, or
2 as appropriate.

4. If contral is in a non-Al method, control continues normally until the first attempt to
return to an Al method or invoke an Al method. Then ATC follows option 1, or 2 as
appropriate.

5. If control is transferred from a non-Al method to an Al method through the action of
propagating an exception and if an AIE is pending then when the transition to the Al-
method occurs the thrown exception is discarded and replaced by the AIE.

RTSJ

REQ/AERO.RT.ASY.0150

If an AIE isin a pending state then this AIE shall be thrown only when:

1. Control enters an Al-method.
2. Control returnsto an Al-method.

2. Control leaves a synchronized block within an Al-method.

RTSJ

REQ/AERO.RT.ASY.0160

When inherited (event class) happened() method is called on an AIE or that AIE is superseded by
another the first AIE’s state must be made non-pending.

RTSJ

REQ/AERO.RT.ASY.0170

If the current AIE is an AIEO and the new AIE is an AlEXx associated with any frame on th
then the new AIE (AIEX) shall be discarded.

[eRKSJI

REQ/AERO.RT.ASY.0180

If the current AIE is an AIEx and the new AIE is an AIEOQ, then the current AIE (AIEX) sh
replaced by the new AIE (AIEO).

bRTSJ

AERO/SP1 0.3 2002-09-09

Page 44 of 134

REQ/AERO.RT.ASY.0190 If the current AIE is an AIEx and the new AIE is an AIEy from a frame lower on the stack, then RTSJ T

the new AIE (AIEY) must be discarded.

REQ/AERO.RT.ASY.0200 |If the current AIE is an AIEx and the new AIE is an AIEy from a frame higher on the stack, the RTSI| T

current AIE (AIEX) must be replaced by the new AIE (AIEY).

Remark :

An AIE may be raised while another AIE is pending or in action. Because Al code blocks are nested by method invocation (a stack-based nesting)
thereis a natural SEMANTICS AND REQUIREMENTS precedence among active instances of AIE. Let AIEO be the AIE raised when t.interrupt()
is invoked and AIEi (i = 1,...,n, for n unique instances of AIE) be the AIE raised when AlEi.fire() is invoked. Assume stacks gow down and
therefore the phrase “a frame lower on the stack than this frame” refers to a method at a deeper nesting level.

Match

No Match

Propagate == true clear the pending AlE,
return true

Propagate == false clear the pending AIE,
return false

propagate (whether the AIE remains pend
is invisible except to the implementation)

do not clear the pending AIE, return false

ing

AERO/SP1 0.3 2002-09-09 Page 45 of 134

Exception

The need for additional exceptions given the new semantics added by the other sections of this specification is obvious. That
the specification attaches new, nontraditional, exception semantics to AsynchronouslylnterruptedException is, perhaps, not so

obvious.

REQ/AERO.RT.EXC.0010 |All exceptions, except AsynchronouslylnterruptedException, are required to have semantics RTSJ
exactly asthose of their eventual superclassin the java* hierarchy.

REQ/AERO.RT.EXC.0020 |Instances of the class AsynchronouslylnterruptedException shall be generated by execution of RTSJ
program logic and by internal virtual machine mechanisms that are asynchronous to the
execution of program logic which is the target of the exception.

REQ/AERO.RT.EXC.0030 |Program logic that exists in methods that throw Asynchronouslylnterrupted-Exception shall be RTSJ

subject to receiving an instance of Asynchronouslylnterrupted-Exception at any time during
execution.

AERO/SP1 0.3 2002-09-09 Page 46 of 134

3.2 API

The Java API helps make Java suitable for networks through its support for platform independence and security. The Java API
is set of runtime libraries that give a standard way to access the system resources of a host computer. When writing a Java
program, the base mechanism assume the class files of the Java APl will be available at any Java virtual machine that may
ever have the privilege of running the program. This is arelatively safe assumption because the Java virtual machine and the
class files for the Java APl are the required components of any implementation of the Java Platform. When running a Java
program, the virtual machine loads the Java API classfiles that are referred to by the program’s class files. The combination of
all loaded class files (from the program and from the Java API) and any loaded dynamic libraries (containing native methods)
constitute the full program executed by the Java virtual machine.

The class files of the Java API are inherently specific to the host platform. The API’s functionality must be implemented
expressly for a particular platform before that platform can host Java programs. To access the native resources of the host, the
Java API calls native methods. As shown in next figure, the class files of the Java APl invoke native methods so the Java
program doesn't have to. In this manner, the Java API's class files provide a Java program with a standard, platform-
independent interface to the underlying host. To the Java program, the Java API looks the same and behaves predictably no
matter what platform happens to be underneath. Precisely because the Java virtual machine and Java APl are implemented
specifically for each particular host platform, Java programs themselves can be platform independent.

T

//
I." Java

'\\ program /

‘ Java methods (Java APT) ‘
. l .
| native methods (dynamic libraries) |

x
J

| host operating system |

AERO/SP1 0.3 2002-09-09 Page 47 of 134

The internal design of the Java API is also geared towards platform independence. With the aim of making the execution its
best on each platform, the virtual machine will very likely adapt elements of application dlightly differently on different
platforms. In these ways and many others, the internal architecture of the Java APl is aimed at facilitating the platform
independence of the Java programs that useit.

In addition to facilitating platform independence, the Java API contributes to Java's security model. The methods of the Java
AP, before they perform any action that could potentially be harmful (such aswriting to the local disk), check for permission.
In Java releases prior to 1.2, the methods of the Java API checked permission by querying the security manager. The security
manager is a special object that defines a custom security policy for the application.

In Java 1.2, the job of the security manager was taken over by the access controller, a class that performs stack inspection to
determine whether the operation should be allowed. (For backwards compatibility, the security manager still exists in Java
1.2)) By enforcing the security policy established by the security manager and access controller, the Java APl helps to
establish a safe environment in which potentially unsafe code can run.

APl reference to the "fundamental classes' in the Java programming environment. The fundamental classes in the Java
Development Kit (JDK) provide a powerful set of tools for creating portable applications; they are an important component of
the toolbox used by every Java programmer. This reference covers the classesin thej ava. | ang, j ava. i o, j ava. net,
java.util,java.l ang. refl ect packages.

But in the space context, not all of them are required; note that the material herein does not cover the classes that comprise the
AWT and Swing graphics, such as the classesin thej ava. mat h (Biginteger class, not the same APIs that java.lang.math !)
java.text,java.util.zip java.rm,java. sql,andj ava. security packages.

AERO/SP1 0.3 2002-09-09 Page 48 of 134

3.2.1 General requirements

Basic requirements

REQ/AERO.APIL.GEN.0010 | The full java core language without restriction shall be available to write embedded application STD
code.

Remarks :Core language mean the part of the language independent of APls.

REQ/AERO.APIL.GEN.0020 | Thefollowing standard Java API shall be support with restriction detailed in next chapter : Aero
o javalio
o javallang
o javallang/ref

o javallang/reflect
o javalnet
o javalutil

o javax/reatime

REQ/AERO.APL.GEN.0030 |with supported APIs is defined the minimum supported APIs by the AERO JVM. Supported Aero
mean that application could use this APIs as required, but not involve to necessary embed all
APls if they're not all required. Only a set of required APIs (take in the minimum suppornted
APIs) could be embed.

AERO/SP1 0.3 2002-09-09 Page 49 of 134

REQ/AERO.APL.GEN.0040 | Thefollowing set of datatypes shall be provided : STD
- Boolean,

- Integer (on 32 bits),

- Doubleinteger precision (on 64 bits),

- Hoating point,

- Doublefloating point precision (on 64 hits),

- Multi-dimension arrays

REQ/AERO.APL.GEN.0045 | An java application shall be able to compute complex mathematical operations on integer, STD
floating point, long and double values.

AERO/SP1 0.3 2002-09-09 Page 50 of 134

3.2.2 Standard API supported in embedded context

3.2.2.1 1/O AP1

The package j ava. i o contains the classes that handle fundamental input and output operations in Java. The I/O classes can
be grouped as follows:

. Classes for reading input from a stream of data.

. Classes for writing output to a stream of data.

. Classes that manipulate files on the local filesystem.
. Classes that handle object serialization.

I/0 in Javais based on streams. A stream represents a flow of data or a channel of communication. Java 1.0 supports only
byte streams. The | nput St r eamclass is the superclass of all of the Java 1.0 byte input streams, while Qut put St r eamis
the superclass of all the byte output streams. The drawback to these byte streams is that they do not always handle Unicode
characters correctly.

Asof Java 1.1, j ava. i 0 contains classes that represent character streams. These character stream classes handle Unicode
characters appropriately by using a character encoding to convert bytes to characters and vice versa. The Reader classisthe
superclass of al the Java 1.1 character input streams, whileW i t er isthe superclass of all character output streams.

The | nput St r eanReader and Qut put St reanW i t er classes provide a bridge between byte streams and character
streams. By wrapping an | nput St r eanReader around an | nput St r eamobject, the bytes in the byte stream are read
and converted to characters using the character encoding scheme specified by the | nput St r eanReader . Likewise, it is
possible to wrap an Qut put St reamW i t er around any Qut put St r eamobject so that it is possible to write characters
and have them converted to bytes.

Asof Javal.l, | ava. i 0 aso contains classes to support object serialization. Object serialization is the ability to write the
complete state of an object to an output stream, and then later recreate that object by reading in the serialized state from an

AERO/SP1 0.3 2002-09-09 Page 51 of 134

input stream. The bj ect Qut put St ream and Cbj ect | nput St r eam classes handle serializing and deserializing
objects, respectively.

The RandomAccessFi | e classisthe only class that does not use a stream for reading or writing data. As its name implies,
RandomAccessFi | e provides nonsequentia accessto afile for both reading and writing purposes.

The Fi | e class represents a file on the lacal file system. The class provides methods to identify and retrieve information
about afile.

Next figures shows the class hierarchy for the j ava. i 0 package. Thej ava. i o package defines a number of standard I/O
exception classes. These exception classes are all subclasses of | CExcept i on, as shown in next figures.

AERO/SP1 0.3 2002-09-09 Page 52 of 134

jova.lang ' fava.io $|en fﬂ'VﬂJﬂﬂg fﬂh"ﬂ.iﬂ InvalidClassException
— i |
e e : —
- [Nothctvebxapion |
5 o} [}
: UnsepportedEncodingException
5 [UTiDotefometException |
—
i
Serinlizuble
Externalizable
KEY [anss } Jusmacamss F (omsiommosss § -
e e

AERO/SP1 0.3 2002-09-09 Page 53 of 134

Details of standard Java I/O API that shall be supported without restriction.

The following list of API defines the minimum requirement for supported APIs by the core VM. Embedded APIs shall be
taken into this list without require to take all (except dependable sub APIs).

REQ/AERO.APL.GEN.0050 | Thejavaio subset of APIsthat the AERO JVM shall support without restriction is defined as:: Aero

j avali o/ Buf f er edl nput Stream

j aval i o/ Buf f er edQut put St ream
javaliol/ Buf feredWiter

javali o/ Byt eArrayl nput Stream

j avali o/ Byt eArrayQut put Stream
j aval i o/ Char Arr ayReader
javaliol CharArrayWiter

javal i o/ Char Conver si onExcepti on
j aval i o/ Dat al nput

j avali o/ Dat al nput St r eam

j aval i o/ Dat aCut put

j aval i o/ Dat aCut put St ream

j aval i o/ EOFExcepti on

javaliol Externalizable
javaliol Fil eDescriptor
javaliol/FileFilter

javali o/ Fi |l eNot FoundExcepti on
javaliol Fil eReader

javaliol/ FileWiter

javaliol FilenaneFilter
javaliol/ Filterl nput Stream
javaliol FilterQutputStream
javaliol FilterReader
javalio/FilterWiter

javali o/l OException
javaliollnput Stream
javal/iol/lnterruptedl OException
javaliol/lnvalidd assException
javal/io/lnvalidObject Exception
javali o/ Li neNunber | nput St r eam

AERO/SP1 0.3 2002-09-09

Page 54 of 134

javali
javali
javali
javali
javali
javali
javali
javali
javali
javali
javali
javali
javali
javali
javali
javali
javali
javali

o/ Li neNunber Reader

o/ Not Act i veExcepti on

o/ Not Seri al i zabl eExcepti on
o/ Obj ect | nput

o/ Obj ect | nput Val i dati on

o/ Obj ect Qut put

o/ Cbj ect St reanExcepti on

o/ Opti onal Dat aExcepti on

o/ Qut put Stream

o/ Pi pedReader

o/ Pi pedWiter

o/ Pushbackl nput St r eam

o/ PushbackReader

o/ Sequencel nput St ream

o/ Serializabl e

o/ Seri al i zabl ePer ni ssi on
o/ St r eantCor r upt edExcepti on
o/ SyncFai | edExcepti on

AERO/SP1 0.3 2002-09-09

Page 55 of 134

Details of standard Java API that shall be supported with restriction (not all function defined in each APIs are required)

REQ/AERO.API.GEN.0060

Thejava.io subset of APIsthat the AERO JVM shall support with restriction is defined as:

javali o/ Buf f eredReader (1)
javaliol/File(l)

javaliol FilelnputStrean(1)
javali o/ Fi |l eNot FoundExcepti on
javaliol Fil eQutputStrean(1)
javaliol Fil ePerm ssion(1)
javaliol I nput StreanReader (1)
javali o/ Qbj ect | nput Strean(1)

j aval i o/ Obj ect Qut put St rean(1)
javaliol Qbject Streanmd ass(1)
javali ol Qbj ect StreamConst ant s(1)
javali ol Qbject Streanfi el d(1)
javal/io/ Qutput StreamWiter (1)
j avali o/ Pi pedl nput Strean{1)
javali o/ Pi pedQut put Strean(1)
javali o/ Reader (1)

javali ol Streanrokeni zer (1)

Aero

(1) exact subset of APIswill be defined in Detailed Design Document.

AERO/SP1 0.3 2002-09-09

Page 56 of 134

3.2.2.2 Lang API

The packagej ava. | ang contains classes and interfaces that are essential to the Java language. These include:

bj ect , the ultimate superclass of al classesin Java.

Thr ead, the class that controls each thread in a multithreaded program.

Thr owabl e, the superclass of all error and exception classesin Java.
Classes that encapsulate the primitive data typesin Java.

Classes for accessing system resources and other low-level entities.
Mat h, aclass that provides standard mathematical methods.

St ri ng, the class that represents strings.

Because the classes in the j ava. | ang package are so essential, the j ava. | ang package is implicitly imported by every
Java source file. In other words, it could be possible to all of the classes and interfaces inj ava. | ang using their simple

names.

Next figures shows the class hierarchy for thej ava. | ang package.

The possible exceptions in a Java program are organized in a hierarchy of exception classes. The Thr owabl e classis at the
root of the exception hierarchy. Thr owabl e has two immediate subclasses: Except i on and Er r or . Next figures shows
the standard exception classes defined in thej ava. | ang package, and the standard error classes defined inj ava. | ang.

AERO/SP1 0.3 2002-09-09 Page 57 of 134

java.ang . T P e
5 'I ClaneMar rtedExcept] "
: f Coneborsaype “*P"'I | Aroystoreksception I
D [Cod | | e | e W
e e m -|Inmnr1ullnituplﬂ I -Ihqlrmnlllupﬁﬂn HumberformatException
Int L
Exceptian -lnmmhmn I -ll'“mrs""*m""" I
]
e | e)
-|n..ﬂm.:mn r _1““" vor—rm— I StringladexOutOfBaundsException i

=

roce

m -| NullPointerException I

SecurityManoge

StringBuffor

v [l [[
L O Iy Ry
[

HEY [rnss } fusmacass F (iwwass

oy (e o b

|
2

AERO/SP1 0.3 2002-09-09

Page 58 of 134

-i LinkogeError I-
—11lml|i|.laﬂ|'|1 I

ClossCircularityError

[Cossfomutbrar |
[icompotiblecossChangekrrr |

InternalError

VirtuolMuochineError

0 ——
o

[NosedMethodError |

KEY

[cunss | feesmacass F et

AERO/SP1 0.3 2002-09-09 Page 59 of 134

Details of standard Java Lang API that shall be supported without restriction.

The following list of API defines the minimum requirement for supported APIs by the core JVM. Embedded APIs shall be
taken into this list without require to take all (except dependable sub APIs).

REQ/AERO.APL.GEN.0070 | Thejavalang subset of APIsthat the AERO JVM shall support without restriction is defined as : Aero

j aval | ang/ Abst r act Met hodErr or

javal/l ang/ Arit hneti cExcepti on

j aval/ | ang/ Arrayl ndexQut Of BoundsExcepti on
j aval/l ang/ ArraySt or eExcepti on

j aval | ang/ Bool ean

javall ang/ Byt e

javal/ l ang/ Cl assCast Excepti on
javal/lang/ C assCircul arityError

j aval | ang/ Cl assFor nat Error

j aval | ang/ C assNot FoundExcepti on

j aval/ | ang/ C oneNot Support edExcepti on

j aval/ | ang/ C oneabl e

j aval | ang/ Conpar abl e

j aval | ang/ Compi | er

j aval/ | ang/ Doubl e

j aval/ l ang/ Error

j aval/ | ang/ Excepti on

javal/l ang/ ExceptionlnlnitializerError
j aval | ang/ Fl oat

javal/l ang/ 111 egal AccessError

javal/l ang/ 111 egal AccessException
javal/l ang/ 111 egal Argunent Excepti on
javal/l ang/ 111 egal Monitor StateException
javal/l ang/ 111 egal St at eExcepti on

javal/l ang/ 111 egal ThreadSt at eExcepti on
javal/l ang/ I nconpati bl e assChangeErr or
j aval/ | ang/ | ndexQut Of BoundsExcepti on
javal/l ang/ I nstantiationError

javal/l ang/ I nstantiati onException

j aval | ang/ | nt eger

AERO/SP1 0.3 2002-09-09

Page 60 of 134

javal/l ang/ I nternal Error

javal/l ang/ | nterrupt edException
j aval | ang/ Li nkageErr or

javal/l ang/ Long

javal/ | ang/ Mat h

javal/l ang/ Negati veArraySi zeException
j aval/ | ang/ NoCl assDef FoundEr r or

j aval/ | ang/ NoSuchFi el dError

j aval/ | ang/ NoSuchFi el dExcepti on
j aval/ | ang/ NoSuchMet hodEr r or

j aval/ | ang/ NoSuchMet hodExcepti on
j aval/l ang/ Nul | Poi nt er Excepti on
j aval/ | ang/ Number

j aval/ | ang/ Nunber For mat Excepti on
j aval | ang/ Obj ect

j aval | ang/ Qut Of Menor yErr or

j aval | ang/ Process

j aval/ | ang/ Runnabl e

j aval/ | ang/ Runt i neExcepti on

j aval/l ang/ Runt i nePer m ssi on
javal/l ang/ SecurityException

j aval | ang/ Short

j aval | ang/ St ackOver f| owkr r or

j aval | ang/ Thr eadDeat h

j aval/ | ang/ Thr eadLocal

j aval | ang/ UnknownEr r or

javal/l ang/ Unsati sfi edLi nkError

j aval/ | ang/ Unsupport edC assVer si onError
j aval/ | ang/ Unsupport edOper at i onExcepti on
javal l ang/ Veri fyError

j aval | ang/ Vi rt ual Machi neError

j aval/ | ang/ Voi d

j aval/ | ang/ r ef / Phant onRef er ence
javal l ang/ ref / Ref erence

javal | ang/ r ef | Ref erenceQueue

j aval | ang/ ref / Sof t Ref erence

j aval | ang/ r ef | WeakRef er ence

AERO/SP1 0.3 2002-09-09

Page 61 of 134

Details of standard Java API that shall be supported with restriction (not all function defined in each APIs are required)

REQ/AERO.API.GEN.0080

Thejava.io subset of APIsthat the AERO JVM shall support with restriction is defined as:

javall ang/ C ass(1)

javal | ang/ Cl assLoader (1)

javal/l ang/ | nheritabl eThreadLocal (1)
j aval/ | ang/ Package(1)

javal/lang/ Runtime(1)

j aval/ | ang/ SecurityManager (1)

j aval | ang/ Syst en(1)

j aval/ l ang/ Thread(1)

j aval | ang/ Thr eadGroup(1)

j aval/ | ang/ Thr owabl e(1)
javallang/refl ect/ Accessi bl eCbj ect (1)
javal/lang/reflect/ Constructor(1)
javallang/reflect/Method(1)

Aero

(1) exact subset of APIswill be defined in Detailed Design Document.

AERO/SP1 0.3 2002-09-09 Page 62 of 134

3.2.2.3 Lang/Reflect API

The packagej ava. | ang. r ef | ect isnew asof Java l.l. It contains classes and interfaces that support the Reflection API.
Reflection refers to the ability of a class to reflect upon itself, or look inside of itself, to see what it can do. The Reflection
APl makesit possible to:

. Discover the variables, methods, and constructors of any class.

. Create an instance of any class using any available constructor of that class, even if the class initiating the creation
was not compiled with any information about the class to be instantiated.

. Access the variables of any object, even if the accessing class was not compiled with any information about the class
to be accessed.

. Call the methods of any object, even if the calling class was not compiled with any information about the class that
contains the methods.

. Create an array of objects that are instances of any class, even if the creating class was not compiled with any

information about the class.

These capabilities are implemented by the j ava. | ang. Cl ass class and the classes in the j ava. | ang. ref | ect
package. Next figure shows the class hierarchy for thej ava. | ang. r ef | ect package.

AERO/SP1 0.3 2002-09-09 Page 63 of 134

leu,my '"ngreﬂe“

| Object

| Exception IE]| InveentionTargetException '

m [euss b (rwavass) ———
r ——- - implamants

Java 1.1 currently uses the Reflection API for two purposes:

« The JavaBeans APl supports a mechanism for customizing objects that is based on being able to discover their public
variables, methods, and constructors. JavaBeans are not foreseen to be embedded in space context.

e The object serialization functionality in j ava. i o is built on top of the Reflection API. Object serialization allows
arbitrary objects to be written to a stream of bytes and then read back later as objects.

Space context could use the Reflection to develop new onboard capabilities to investigate when error occurs in embedded
application code, monitoring data etc.

AERO/SP1 0.3 2002-09-09

Page 64 of 134

Details of standard Java Reflect API that shall be supported without restriction.

The following list of API defines the minimum requirement for supported APIs by the core JVM. Embedded APIs shall be

taken into this list without require to take all (except dependable sub APIs).

REQ/AERO.API.GEN.0090

Thejavalang.reflect subset of APIsthat the AERO JVM shall support without restrictionis
defined as:

javall ang/reflect/Array
javal/lang/reflect/Field
javallang/reflect/InvocationTarget Exception
javal l ang/ refl ect/ Mermber

javall ang/refl ect/ Mdifier

javal/l ang/refl ect/Refl ect Perm ssion

Aero

AERO/SP1 0.3 2002-09-09 Page 65 of 134

3.2.2.4 Util API

The packagej ava. uti | contains anumber of useful classes and interfaces. Although the name of the package might imply
that these are utility classes, they are really more important than that. In fact, Java depends directly on several of the classesin
this package, and many programs will find these classes indispensable. The classes and interfacesinj ava. uti | include:

. The Hasht abl e class for implementing hashtables, or associative arrays.

. The Vect or class, which supports variable-length arrays.

. The Enurrer at i on interface for iterating through a collection of elements.

. The St ri ngTokeni zer classfor parsing strings into distinct tokens separated by delimiter characters.

. The Event Ohj ect class and the Event Li st ener interface, which form the basis of the new AWT event model
inJaval.l.

. TheLocal e classin Java 1.1, which represents a particular locale for internationalization purposes.

. The Cal endar and Ti neZone classes in Java. These classes interpret the value of a Dat e object in the context of

aparticular calendar system.

. The Resour ceBundl e class and its subclasses, Li st Resour ceBundl e and Pr opert yResour ceBundl e,
which represent sets of localized datain Java 1.1.

Next figure showsthe class hierarchy for thej ava. uti | package.

AERO/SP1 0.3 2002-09-09 Page 66 of 134

java.lang java.util R java.io

EventObject .-..1:““““"
‘o —J
Observable i
i "; ListResourceBundle

S b ey o e e e o e iy o Pt ko st ety Brsahorior phoiat ot

"
"
1
[
L]
-
¥
"
i
I
[l
1
[

- —{ TimeZone ~—d 1 SimpleTunaZone m

RuntimeException

KEY T | B I J———

= -

AERO/SP1 0.3 2002-09-09 Page 67 of 134

Details of standard Java Util API that shall be supported without restriction.

The following list of API defines the minimum requirement for supported APIs by the core JVM. Embedded APIs shall be
taken into this list without require to take all (except dependable sub APIs).

REQ/AERO.APL.GEN.0100 | Thejavautil subset of APIsthat the AERO JVM shall support without restriction is defined as: Aero
javal/ util/ AbstractCol |l ection
javal/util/ Abstract Map
javal/util/ Abstract Sequenti al Li st
javal/ util/ Abstract Set
javalutil/ArrayLi st
javalutil/Arrays
javalutil/Bit Set
javal/util/Coll ection
javal/util/Coll ections
javal/ util/ Conpar at or
javal util/ Concurrent Modificati onException
java/util/Dictionary
javal/util/EnptyStackException
javal/util/Enuneration
javal/util/EventLi stener
javal/util/Event Obj ect
javal util/HashMap
javal/util/HashSet
javal/util/Hashtable
javalutil/Iterator
javal/util/LinkedLi st
javalutil/List
javalutil/Listlterator
javal/util/ Map
javal/util/ M ssi ngResour ceExcepti on
javal util/NoSuchEl ement Excepti on
javal/util/ Cbservabl e
javal util/ Cbserver
javal util/Properties
java/util/Random

AERO/SP1 0.3 2002-09-09

Page 68 of 134

javal/util/ ResourceBundl e

javalutil/ Set

javal/util/ SortedMap

javal/util/ SortedSet

javal util/ Stack

javalutil/ StringTokeni zer

javal/util/ TooManyLi st ener sExcepti on
javal/util/ Vector

javal util/WakHashMap

Details of standard Java API that shall be supported with restriction (not all function defined in each APIs are required)

REQ/AERO.API.GEN.0110

Thejava.util subset of APIsthat the AERO JVM shall support with restriction is defined as :

javal/util/ AbstractlList(1)
javalutil/Cal endar (1)
javal/util/Date(1)
javalutil/jar/Attributes(1)
javal/util/PropertyPerm ssion(1l)
javal/util/PropertyResourceBundl e(1)
javal util/ G egorianCal endar (1)
javalutil/ListResourceBundl e(1)
javal/util/Local e(1)
javal/util/jar/JarEntry(1)

javalutil/jar/JarFile(1)
javalutil/jar/Jarlnput Strean(l)
java/util/jar/Mnifest (1)

Aero

(1) exact subset of APIswill be defined in Detailed Design Document.

AERO/SP1 0.3 2002-09-09 Page 69 of 134

3.2.3 Specific new API in embedded context

3.2.3.1 javax.realtime API

The packagej avax. r eal ti me isanew package introduced by the RTJ group and specified through the RTSJ document. It
contains a number of useful classes and interfaces specific for real-time.

The classes and interfacesinj avax. real ti nme include:

. The AsyncEvent classfor implementing Asynchronous event and timer

. The Menor yAr ea class, which supports different memory types.

. The Moni t or classfor priority management.

. The Menor yCont r ol classfor memory management

. TheReal ti meSecurity classand the Real t i meSyst emclass, which form the basis of the new realtime model
in Java.

. The Schedul er classwhich represents a upgrade of the base Java scheduler.

. The Real Ti meThr ead extension of base Thread.

. The Thr owabl e extension class and its subclasses which represent sets of new Error and Exception for realtime

The complete javax.realtime hierarchy class is provided in annex.

AERO/SP1 0.3 2002-09-09 Page 70 of 134

The full standard Java realtime API defined in RTJS shall be supported without restriction. Embedded APIs shall be taken
into thislist without require to take all (except dependable sub APIS).

REQ/AERO.APL.GEN.0120 | The AERO JVM shall support API specified in the final release V1.0 of 11/12/2001 of RTSI| T
javax.reatime API. It may include later additions and clarification.

3.2.3.2 Others APIs

Some new generic functions will be necessary to implement onboard application, even if representative application porting in Java will
show later API that could be defined, some first basic functions could be defined.

REQ/AERO.APL.GEN.0130 | An gpplication shall be able to send internal message to the rest of onboard software through a| | Aero | T
unique simple mechanism.

REQ/AERO.APIL.GEN.0140 | An application shall be able to send internal message to the rest of onboard software and wait an Aero | T
acknowledge through a unique simple mechanism

REQ/AERO.APL.GEN.0150 | An gpplication shall be able to read on board time with a precision of [TBD — implantatiof | Aero | T
depending of On-board software]

REQ/AERO.APL.GEN.0160 | An application shall be able to wait a specified on board time with a precision of [TBD Aero | T
implantation depending of On-board software].

AERO/SP1 0.3 2002-09-09 Page 71 of 134

3.2.4 API for test & debug purposes

This chapter details of standard Java APl subset that shall be supported for debug and test purposes (not in embedded
context). The following list of API defines the minimum requirement for supported APIs by the core VM. This APIs will be
used for validation and debug of application, but are not destined to be embed.

3.24.1 1/0 API

REQ/AERO.APL.GEN.0170 | Thejavaio subset of APIsthat the AERO JVM shall support for test purposes without Aero
restriction is defined as :

javaliol/ PrintStream
javalio/PrintWiter

j aval/ i o/ RandonAccessFil e

javaliol/ StringBufferlnputStream
javaliol StringReader

javalio/ StringWiter

j aval i o/ UTFDat aFor mat Excepti on

j aval i o/ Unsupport edEncodi ngExcepti on
javal/i o/ WiteAbortedException
javalio/Witer

AERO/SP1 0.3 2002-09-09 Page 72 of 134

3.2.4.2 Lang API

REQ/AERO.APL.GEN.0180 | Thejavalang subset of APIsthat the AERO JVM shall support for test purposes without Aero
restriction is defined as :

j aval | ang/ Char act er

javallang/ String

javall ang/ Stri ngBuf f er

javall ang/ Stri ngl ndexQut Of BoundsExcepti on

3.2.4.3 Net API

The packagej ava. net contains classes and interfaces that provide a powerful infrastructure for networking in Java. These
include:

» The URL classfor basic accessto Uniform Resource Locators (URLS).

« TheURLConnect i on class, which supports more complex operations on URLSs.

» TheSocket classfor connecting to particular ports on specific Internet hosts and reading and writing data using streams.
» TheServer Socket classfor implementing servers that accept connections from clients.

- The DatagranBocket, MilticastSocket, and DatagranPacket classes for implementing low-level
networking.

« Thel net Addr ess class, which represents Internet addresses.

Next figure shows the class hierarchy for thej ava. net package.

AERO/SP1 0.3 2002-09-09

Page 73 of 134

jova.lang java.net

MulticnstSacket
ContentHandlerFactory '

SocketimplFoctory

URLStreamHondlerFactory

FileNameMop '

KEY [N 7T | fuosmaaoss b (Awwass 3 — s

) (s e

AERO/SP1 0.3 2002-09-09

Page 74 of 134

REQ/AERO.API.GEN.0190

The java.net subset of APIsthat the AERO JVM shall support for test purposes without
restriction is defined as :

j aval net/ Aut henti cat or

j aval net/ Bi ndExcepti on

j aval net/ Connect Excepti on

j aval net/ Cont ent Handl er

j aval net/ Cont ent Handl er Fact ory
j aval net / Dat agr anPacket

j aval net / Dat agr anSocket

j aval net / Dat agr anSocket | npl

j aval net/ Fi | eNaneMap

j aval/ net/ Ht t pURLConnecti on

j aval/ net/ | net Addr ess

j aval net/ Jar URLConnect i on
javal net/ Mal f or medURLExcepti on
j aval/ net/ Ml ti cast Socket

j aval/ net/ Net Per m ssi on

j aval net / NoRout eToHost Excepti on
j aval net/ Passwor dAut henti cati on
j aval net/ Prot ocol Excepti on

j aval net/ Server Socket

j aval net/ Socket

j aval net/ Socket Excepti on

j aval net/ Socket I npl

j aval net/ Socket | npl Fact ory

j aval net/ Socket | nput St r eam

j aval net/ Socket Opti ons

j aval net/ Socket Qut put St ream

j aval net/ Socket Per nmi ssi on

Aero

AERO/SP1 0.3 2002-09-09 Page 75 of 134

3.3 JNI

The Java Native Interface (INI) is a standard mechanism for inter-operability between Java and native code, i.e., code written
in non-portable system programming languages like C. Last standard release is the version 1.2 of the Java Native Interface.
Since NI provides hundreds of routines, including support for JNI would pose too big an overhead on those applications that
arenot using it. Thisiswhy JNI support must be activated explicitly when required.

Native code that is interfaced through the JNI interface is typically stored in shared libraries that are dynamically loaded by
the virtual machine when the application uses native code. Since dynamically loading libraries is not possible on small
embedded systems that don't provide a file system, a different approach must be taken. Instead of loading a library, it is
preferable to have the native code be part of the application itself, i.e., to link the native object code directly with the

application
REQ/AERO.APIL.GEN.0200 | AERO JVM shall provides the support for INI in a Real-Time deterministic implementation Aero
REQ/AERO.APIL.GEN.0210 | It shall be possible to specify an option that enables the support for INI Aero

REQ/AERO.APL.GEN.0220 ||t shall be possible to allows direct linking of native object code with the application through an Aero
option. This option could be used in addition to the JNI support option

REQ/AERO.APL.GEN.0230 | To build an application that uses the native code on atarget that requires manual linking, it might Aero
also be required to provide these object files to the linker, and it might even be required to
provide a specific object file that contains the NI support

AERO/SP1 0.3 2002-09-09 Page 76 of 134

4. Environment requirements

4.1 Tools

REQ/AERO.ENVIRON.010 |A tool for creating a single executable image out of the AERO JVM and a set of Java classes. Aero
shall be develop. This image can be loaded into flash-memory or ROM, avoiding the need for a
file-system in the target platform. This tool shall be extended such that opportunities to replace
dynamic allocation by static allocation whenever analysis of the application reveals that this
optimisation is possible.

REQ/AERO.ENVIRON.020 |The static GC shall be part of the tool to build an executable image. It shall bring fast and Aero
predictabl e execution to the affected heap operations.

REQ/AERO.ENVIRON.030 |A simulator of the AERO JVM shal be provided by porting the VM to Aero
the future application development system’s OS (Solaris or Windows) to be able to run
applications there. Native code (e.g. accessing hardware) shall not be included in the emulation

Also, Java code that accesses hardware directly (eg. through RTSJs
PhysicalMemory class) will not work directly on such an emulation and stub will be written
[TBC]

REQ/AERO.ENVIRON.040 | For most effective memory usage, atool that finds the amount of memory that is actually used by Aero
an application shall be provided. This alows for exact selection of the memory required for the
system and to select a heap size for optimal run-time performance.

AERO/SP1 0.3 2002-09-09 Page 77 of 134

4.2 Operating System

REQ/AERO.ENVIRON.050 |AERO JVM software shall run on Sparc ERC32 processor, under a standard posix Operating Aero
System

REQ/AERO.ENVIRON.060 | AERO JVM environment tools shall run on Solaris Operating System and/or Linux. Aero

AERO/SP1 0.3 2002-09-09

Page 78 of 134

5. Operability requirements

5.1 User's manual

REQ/AERO.OPERAB.010 | A user 'smanual shall be written

Aero

5.2 On line help
N/A

5.3 Interface standard

N/A

5.4 Interface ergonomy

N/A

AERO/SP1 0.3 2002-09-09

Page 79 of 134

6. Development requirements

REQ/AERO.DEVELOP.010

Thetailored ECSS-B standard provided in [MP] is applicable to development.

Ae€ero

/T

AERO/SP1 0.3 2002-09-09

Page 80 of 134

7. Portability and maintainability requirements

7.1 Portability of design and code

REQ/AERO.PORT.010 The solution shall be implemented in ANSI C using the GNU gcc cross compiler Aero I

REQ/AERO.PORT.020 Threads shall be based on the POSIX threads standard. STD

REQ/AERO.PORT.030 Design shall provide clear separation of platform-dependant from platform-independant code to Aero
reduces the required effort to port to other platforms.

REQ/AERO.PORT.040 It shall be possible to port the solution to a new posix operating system.. Aero

7.2 Maintainability requirements

REQ/AERO.MAINT.010 The source code shall be delivered to Astrium to be analysed by Astrium quality engineers : Aero | N/A
metrics will be made on code, especially size of modules, cyclomatic complexity.

REQ/AERO.MAINT.020 The implementation is required to provide in DDD a documentation stating exactly the algorithm Aero
used for granting such access of thread when they're are preempted in favor of a thrg with
higher execution eligibility.

REQ/AERO.MAINT.030 The implementation is required to provide in the DDD a documentation stating exadtly |tiAero
algorithm used for such placementtiafeads, with higher priority than preempted ones, that may be
given access to the processor at any time as determined by a particular implementation.

REQ/AERO.MAINT.040 Implementations that provide a monitor control algorithm in addition to those described|in [thAgro

AERO/SP1 0.3 2002-09-09

Page 81 of 134

document are required to clearly document the behavior of that algorithm in DDD.

AERO/SP1 0.3 2002-09-09 Page 82 of 134

CHAPTER REMOVED
FROM THE AERO PROJECT
ORIGINAL SP1 DOCUMENT

